Copied to
clipboard

G = C42.141D10order 320 = 26·5

141st non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.141D10, C10.902- 1+4, C4.33(D4×D5), (C4×D5).12D4, C20.62(C2×D4), C4.4D49D5, C202Q830C2, D10.80(C2×D4), (C2×D4).172D10, C42⋊D520C2, (C2×C20).80C23, (C2×Q8).136D10, C22⋊C4.35D10, Dic5.91(C2×D4), C10.89(C22×D4), Dic5⋊Q824C2, C20.17D424C2, (C2×C10).219C24, (C4×C20).185C22, C4⋊Dic5.51C22, D10.12D441C2, C23.41(C22×D5), (D4×C10).154C22, (C22×C10).49C23, (Q8×C10).126C22, C22.240(C23×D5), Dic5.14D440C2, C23.D5.54C22, C54(C23.38C23), (C4×Dic5).141C22, (C2×Dic5).114C23, (C22×D5).224C23, C2.51(D4.10D10), D10⋊C4.110C22, (C2×Dic10).183C22, C10.D4.120C22, (C22×Dic5).142C22, (C2×Q8×D5)⋊10C2, C2.62(C2×D4×D5), (C5×C4.4D4)⋊11C2, (C2×C4×D5).129C22, (C2×D42D5).11C2, (C2×C4).194(C22×D5), (C2×C5⋊D4).59C22, (C5×C22⋊C4).64C22, SmallGroup(320,1347)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.141D10
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — C42.141D10
C5C2×C10 — C42.141D10
C1C22C4.4D4

Generators and relations for C42.141D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=c9 >

Subgroups: 926 in 270 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C4⋊Q8, C22×Q8, C2×C4○D4, Dic10, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C23.38C23, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, D42D5, Q8×D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, C202Q8, C42⋊D5, Dic5.14D4, D10.12D4, C20.17D4, Dic5⋊Q8, C5×C4.4D4, C2×D42D5, C2×Q8×D5, C42.141D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, 2- 1+4, C22×D5, C23.38C23, D4×D5, C23×D5, C2×D4×D5, D4.10D10, C42.141D10

Smallest permutation representation of C42.141D10
On 160 points
Generators in S160
(1 37 11 27)(2 28 12 38)(3 39 13 29)(4 30 14 40)(5 21 15 31)(6 32 16 22)(7 23 17 33)(8 34 18 24)(9 25 19 35)(10 36 20 26)(41 87 51 97)(42 98 52 88)(43 89 53 99)(44 100 54 90)(45 91 55 81)(46 82 56 92)(47 93 57 83)(48 84 58 94)(49 95 59 85)(50 86 60 96)(61 123 71 133)(62 134 72 124)(63 125 73 135)(64 136 74 126)(65 127 75 137)(66 138 76 128)(67 129 77 139)(68 140 78 130)(69 131 79 121)(70 122 80 132)(101 141 111 151)(102 152 112 142)(103 143 113 153)(104 154 114 144)(105 145 115 155)(106 156 116 146)(107 147 117 157)(108 158 118 148)(109 149 119 159)(110 160 120 150)
(1 67 42 107)(2 118 43 78)(3 69 44 109)(4 120 45 80)(5 71 46 111)(6 102 47 62)(7 73 48 113)(8 104 49 64)(9 75 50 115)(10 106 51 66)(11 77 52 117)(12 108 53 68)(13 79 54 119)(14 110 55 70)(15 61 56 101)(16 112 57 72)(17 63 58 103)(18 114 59 74)(19 65 60 105)(20 116 41 76)(21 133 82 151)(22 142 83 124)(23 135 84 153)(24 144 85 126)(25 137 86 155)(26 146 87 128)(27 139 88 157)(28 148 89 130)(29 121 90 159)(30 150 91 132)(31 123 92 141)(32 152 93 134)(33 125 94 143)(34 154 95 136)(35 127 96 145)(36 156 97 138)(37 129 98 147)(38 158 99 140)(39 131 100 149)(40 160 81 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 22 31 32)(23 40 33 30)(24 29 34 39)(25 38 35 28)(26 27 36 37)(41 42 51 52)(43 60 53 50)(44 49 54 59)(45 58 55 48)(46 47 56 57)(61 72 71 62)(63 70 73 80)(64 79 74 69)(65 68 75 78)(66 77 76 67)(81 94 91 84)(82 83 92 93)(85 90 95 100)(86 99 96 89)(87 88 97 98)(101 112 111 102)(103 110 113 120)(104 119 114 109)(105 108 115 118)(106 117 116 107)(121 136 131 126)(122 125 132 135)(123 134 133 124)(127 130 137 140)(128 139 138 129)(141 152 151 142)(143 150 153 160)(144 159 154 149)(145 148 155 158)(146 157 156 147)

G:=sub<Sym(160)| (1,37,11,27)(2,28,12,38)(3,39,13,29)(4,30,14,40)(5,21,15,31)(6,32,16,22)(7,23,17,33)(8,34,18,24)(9,25,19,35)(10,36,20,26)(41,87,51,97)(42,98,52,88)(43,89,53,99)(44,100,54,90)(45,91,55,81)(46,82,56,92)(47,93,57,83)(48,84,58,94)(49,95,59,85)(50,86,60,96)(61,123,71,133)(62,134,72,124)(63,125,73,135)(64,136,74,126)(65,127,75,137)(66,138,76,128)(67,129,77,139)(68,140,78,130)(69,131,79,121)(70,122,80,132)(101,141,111,151)(102,152,112,142)(103,143,113,153)(104,154,114,144)(105,145,115,155)(106,156,116,146)(107,147,117,157)(108,158,118,148)(109,149,119,159)(110,160,120,150), (1,67,42,107)(2,118,43,78)(3,69,44,109)(4,120,45,80)(5,71,46,111)(6,102,47,62)(7,73,48,113)(8,104,49,64)(9,75,50,115)(10,106,51,66)(11,77,52,117)(12,108,53,68)(13,79,54,119)(14,110,55,70)(15,61,56,101)(16,112,57,72)(17,63,58,103)(18,114,59,74)(19,65,60,105)(20,116,41,76)(21,133,82,151)(22,142,83,124)(23,135,84,153)(24,144,85,126)(25,137,86,155)(26,146,87,128)(27,139,88,157)(28,148,89,130)(29,121,90,159)(30,150,91,132)(31,123,92,141)(32,152,93,134)(33,125,94,143)(34,154,95,136)(35,127,96,145)(36,156,97,138)(37,129,98,147)(38,158,99,140)(39,131,100,149)(40,160,81,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,22,31,32)(23,40,33,30)(24,29,34,39)(25,38,35,28)(26,27,36,37)(41,42,51,52)(43,60,53,50)(44,49,54,59)(45,58,55,48)(46,47,56,57)(61,72,71,62)(63,70,73,80)(64,79,74,69)(65,68,75,78)(66,77,76,67)(81,94,91,84)(82,83,92,93)(85,90,95,100)(86,99,96,89)(87,88,97,98)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,136,131,126)(122,125,132,135)(123,134,133,124)(127,130,137,140)(128,139,138,129)(141,152,151,142)(143,150,153,160)(144,159,154,149)(145,148,155,158)(146,157,156,147)>;

G:=Group( (1,37,11,27)(2,28,12,38)(3,39,13,29)(4,30,14,40)(5,21,15,31)(6,32,16,22)(7,23,17,33)(8,34,18,24)(9,25,19,35)(10,36,20,26)(41,87,51,97)(42,98,52,88)(43,89,53,99)(44,100,54,90)(45,91,55,81)(46,82,56,92)(47,93,57,83)(48,84,58,94)(49,95,59,85)(50,86,60,96)(61,123,71,133)(62,134,72,124)(63,125,73,135)(64,136,74,126)(65,127,75,137)(66,138,76,128)(67,129,77,139)(68,140,78,130)(69,131,79,121)(70,122,80,132)(101,141,111,151)(102,152,112,142)(103,143,113,153)(104,154,114,144)(105,145,115,155)(106,156,116,146)(107,147,117,157)(108,158,118,148)(109,149,119,159)(110,160,120,150), (1,67,42,107)(2,118,43,78)(3,69,44,109)(4,120,45,80)(5,71,46,111)(6,102,47,62)(7,73,48,113)(8,104,49,64)(9,75,50,115)(10,106,51,66)(11,77,52,117)(12,108,53,68)(13,79,54,119)(14,110,55,70)(15,61,56,101)(16,112,57,72)(17,63,58,103)(18,114,59,74)(19,65,60,105)(20,116,41,76)(21,133,82,151)(22,142,83,124)(23,135,84,153)(24,144,85,126)(25,137,86,155)(26,146,87,128)(27,139,88,157)(28,148,89,130)(29,121,90,159)(30,150,91,132)(31,123,92,141)(32,152,93,134)(33,125,94,143)(34,154,95,136)(35,127,96,145)(36,156,97,138)(37,129,98,147)(38,158,99,140)(39,131,100,149)(40,160,81,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,22,31,32)(23,40,33,30)(24,29,34,39)(25,38,35,28)(26,27,36,37)(41,42,51,52)(43,60,53,50)(44,49,54,59)(45,58,55,48)(46,47,56,57)(61,72,71,62)(63,70,73,80)(64,79,74,69)(65,68,75,78)(66,77,76,67)(81,94,91,84)(82,83,92,93)(85,90,95,100)(86,99,96,89)(87,88,97,98)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,136,131,126)(122,125,132,135)(123,134,133,124)(127,130,137,140)(128,139,138,129)(141,152,151,142)(143,150,153,160)(144,159,154,149)(145,148,155,158)(146,157,156,147) );

G=PermutationGroup([[(1,37,11,27),(2,28,12,38),(3,39,13,29),(4,30,14,40),(5,21,15,31),(6,32,16,22),(7,23,17,33),(8,34,18,24),(9,25,19,35),(10,36,20,26),(41,87,51,97),(42,98,52,88),(43,89,53,99),(44,100,54,90),(45,91,55,81),(46,82,56,92),(47,93,57,83),(48,84,58,94),(49,95,59,85),(50,86,60,96),(61,123,71,133),(62,134,72,124),(63,125,73,135),(64,136,74,126),(65,127,75,137),(66,138,76,128),(67,129,77,139),(68,140,78,130),(69,131,79,121),(70,122,80,132),(101,141,111,151),(102,152,112,142),(103,143,113,153),(104,154,114,144),(105,145,115,155),(106,156,116,146),(107,147,117,157),(108,158,118,148),(109,149,119,159),(110,160,120,150)], [(1,67,42,107),(2,118,43,78),(3,69,44,109),(4,120,45,80),(5,71,46,111),(6,102,47,62),(7,73,48,113),(8,104,49,64),(9,75,50,115),(10,106,51,66),(11,77,52,117),(12,108,53,68),(13,79,54,119),(14,110,55,70),(15,61,56,101),(16,112,57,72),(17,63,58,103),(18,114,59,74),(19,65,60,105),(20,116,41,76),(21,133,82,151),(22,142,83,124),(23,135,84,153),(24,144,85,126),(25,137,86,155),(26,146,87,128),(27,139,88,157),(28,148,89,130),(29,121,90,159),(30,150,91,132),(31,123,92,141),(32,152,93,134),(33,125,94,143),(34,154,95,136),(35,127,96,145),(36,156,97,138),(37,129,98,147),(38,158,99,140),(39,131,100,149),(40,160,81,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,22,31,32),(23,40,33,30),(24,29,34,39),(25,38,35,28),(26,27,36,37),(41,42,51,52),(43,60,53,50),(44,49,54,59),(45,58,55,48),(46,47,56,57),(61,72,71,62),(63,70,73,80),(64,79,74,69),(65,68,75,78),(66,77,76,67),(81,94,91,84),(82,83,92,93),(85,90,95,100),(86,99,96,89),(87,88,97,98),(101,112,111,102),(103,110,113,120),(104,119,114,109),(105,108,115,118),(106,117,116,107),(121,136,131,126),(122,125,132,135),(123,134,133,124),(127,130,137,140),(128,139,138,129),(141,152,151,142),(143,150,153,160),(144,159,154,149),(145,148,155,158),(146,157,156,147)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I···4N5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order12222222444444444···45510···101010101020···2020202020
size1111441010224444101020···20222···288884···48888

50 irreducible representations

dim1111111111222222444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2D4D5D10D10D10D102- 1+4D4×D5D4.10D10
kernelC42.141D10C202Q8C42⋊D5Dic5.14D4D10.12D4C20.17D4Dic5⋊Q8C5×C4.4D4C2×D42D5C2×Q8×D5C4×D5C4.4D4C42C22⋊C4C2×D4C2×Q8C10C4C2
# reps1114411111422822248

Matrix representation of C42.141D10 in GL6(𝔽41)

100000
010000
00140340
00014034
00340270
00034027
,
0400000
100000
00303200
0091100
00003032
0000911
,
32170000
1790000
000077
00003440
00343400
007100
,
9240000
24320000
000077
00004034
00343400
001700

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,14,0,34,0,0,0,0,14,0,34,0,0,34,0,27,0,0,0,0,34,0,27],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,30,9,0,0,0,0,32,11,0,0,0,0,0,0,30,9,0,0,0,0,32,11],[32,17,0,0,0,0,17,9,0,0,0,0,0,0,0,0,34,7,0,0,0,0,34,1,0,0,7,34,0,0,0,0,7,40,0,0],[9,24,0,0,0,0,24,32,0,0,0,0,0,0,0,0,34,1,0,0,0,0,34,7,0,0,7,40,0,0,0,0,7,34,0,0] >;

C42.141D10 in GAP, Magma, Sage, TeX

C_4^2._{141}D_{10}
% in TeX

G:=Group("C4^2.141D10");
// GroupNames label

G:=SmallGroup(320,1347);
// by ID

G=gap.SmallGroup(320,1347);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,675,297,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽